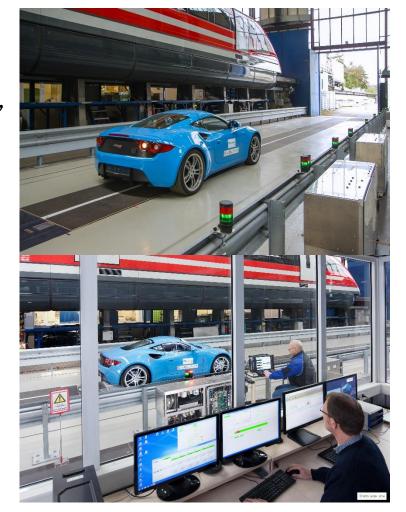
INTIS GmbH

Dynamisches induktives Laden im Straßengüterverkehr

INTIS GmbH

22. November 2017



Über Uns

- 100% Tochtergesellschaft der IABG mbH
- Gründung und Sitz der Gesellschaft: Dezember 2011, Hamburg; hervorgegangen u.a. aus dem Betrieb der Transrapid-Versuchsanlage Emsland (IABG -Betreiber bis Ende 2011)
- 18 Mitarbeiter, überwiegend Ingenieure und Techniker
- Schwerpunktthemen:
 - Entwicklung, Anpassung, testen und Lieferung von Komponenten der induktiven Energieübertragungstechnik (z.B. Kommunikationstechnik, Sensorik, Leistungselektronik, usw.) bis hin zu Komplettsystemen für Industrie und Straßenanwendungen
 - Prüfstandbau und -betrieb

Ein führendes europäisches, technisch-wissenschaftliches Dienstleistungsunternehmen – die IABG

SCHWARZ Holding GmbH

87,4%

12,6%

IABG Mitarbeiter-beteiligungs-AG (MBAG)

IABG

Gesamtleistung: ca. 177 Mio. €*

Mitarbeiter: ca. 1000

(Davon ca. 10% Investitionen in Forschung und Entwicklung, Anlagen, Personalentwicklung)

Automotive

Mitarbeiter: 120

Entwicklung und Betrieb Mechatronischer Test-Systeme für OEM und Zulieferer

InfoKom

Mitarbeiter: 130

Entwicklung und Betrieb von sicheren IuK-Systemen

Mobilität, Energie & Umwelt

Mitarbeiter:

Lösungen für Umweltschutz, Elektromobilität und die Energiewende

Luftfahrt

Mitarbeiter: 160

Betriebsfestigkeitsversuche für Gesamtzellen und Baugruppen

Raumfahrt

Mitarbeiter: 130

Betrieb ESAkoordinierter Raumfahrt-Testzentren in Ottobrunn und Nordwijk

Verteidigung & Sicherheit

Mitarbeiter: 370

Betrieb von militärischen Simulations- und Testsystemen für Analysen und Konzeptionen

INTIS Erfahrungen im Bereich der induktiven Energieübertragung

Anwendungen

Transrapid

Erfahrungen und Kompetenzen

Beratung und Auslegung

- Machbarkeitsstudien
- System-support bei der Entwicklung des Inductive Power Supply (IPS) mit einer Leistung von 500 kW
- Wartung und Weiterentwicklungsunterstützung der Technik

Betrieb

• Fast 30 jähriger Betrieb der Transrapid Versuchsanlage in Emsland (TVE)

Elektromobilität

Beratung und Auslegung

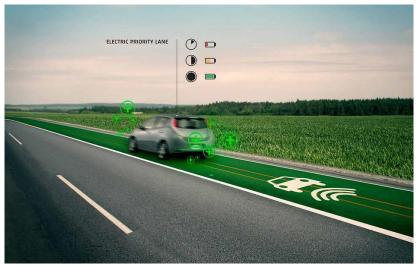
- Spezialisten in der Entwicklung induktiver Energieübertragungssysteme
- Haben die Kenntnisse alle notwendigen Komponenten des induktiven Energieübertragungssystems kundenund anwendungsspezifisch anpassen zu können
- Im Rahmen des Normungsprozesses für Pkw → Unterstützung von Automobil-OEMs und Zulieferer, technische Untersuchungen, bau von Prototypen, Verifikation durch Testen in einem repräsentativen Umfeld
- Ca. 15 Jahre Erfahrung

Lieferung

• Technik im Rahmen von 4 Demonstrationsprojekte an Kunden geliefert, im realen Kundenumfeld im Einsatz

Betrieb und Standardisierung

- Betrieb der eigenen Versuchsanlage für induktive Energieübertragung (dynamisch und statisch)
- Eigene Labore und Werkstätten für F&E-Aktivitäten, sowie die Qualifizierung der Technik im Kundenauftrag
- Mitglied der deutschen (DKE) und internationalen (IEC) Standardisierungsgremien



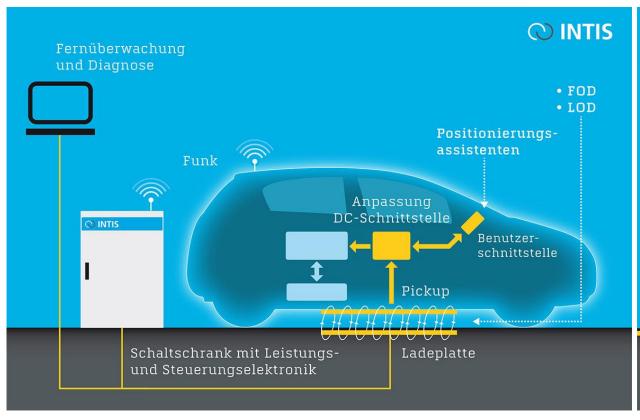
Induktive Energieübertragung – die Vision

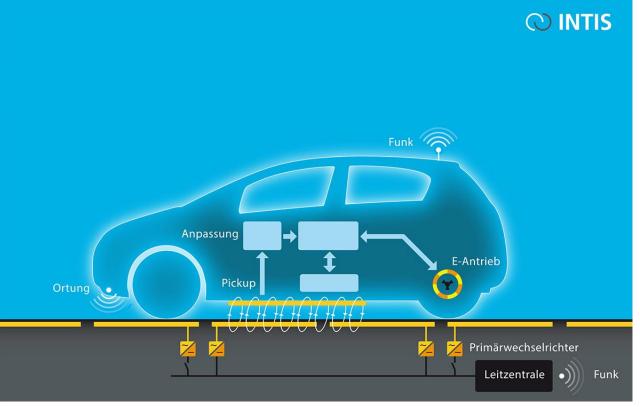
Über die Traktionsenergie wird nicht mehr nachgedacht...

Fahrzeuge können benutzt werden um Personen oder Güter zu befördern und es ist immer genügend Energie dafür vorhanden.

Eigenschaften der induktiven Energieübertragung

- Berührungslos, grundsätzlich für autonome Fahrzeuge oder "automatische" Abläufe geeignet (wo der Benutzer kein Handgriff machen kann oder will)
- Verschleißfrei und Wartungsarm
- "Unsichtbar", Komponenten müssen nicht oberirdisch installiert werden
- Witterungsunabhängig
- Keine berührbaren spannungsführenden Teile
- Gesamtsystemeffizienz von über 90% (gemessen von dem Netzanschluss bis DC-Zwischenkreis des Fahrzeugs)





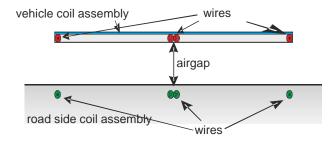
Die berührungslose Energieversorgung von Elektrofahrzeugen – im Stand und während der Fahrt

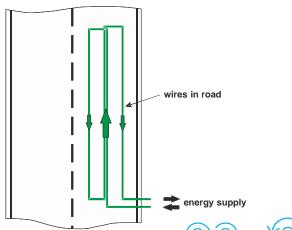
Die berührungslose Energieversorgung von Elektrofahrzeugen – im Stand und während der Fahrt

Statisch	Dynamisch
im Stand am Ladepunkt	während der Fahrt oder in Wartebereichen
Batterieladen	Fahrzeugtraktion/-abnehmer & Batterieladen
PKW & Kleintransporter 3,5 kW 22 kW, Busanwendungen bis 250 kW	PKW 30 kW, Omnibusse, LKW, Kleintransporter 60180 kW
Primärspule am Ladepunkt	Fahrstraße mit Primärspulenabschnitten, bereichsweise zugeschaltet
spezifizierte Leistungsübertragung bei Spulenversatz von bis zu ± 10 cm (in beiden Richtungen der horizontalen Ebene) Vermerk: Normung (ISO 61980) fordert nur ± 7,5 cm in Fahrtrichtung	spezifizierte Leistungsübertragung in Fahrtrichtung bei lateralem Spulenversatz von bis zu ± 10 cm
Primärspule am Ladepunkt sichtbar auf der Fahrbahn oder unsichtbar in der Fahrbahn	Primärspule unsichtbar in der Fahrbahn
Sekundärspulenabmessungen abhängig von der Übertragungsleistung	

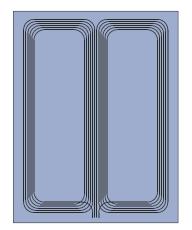
Anforderungen an die dynamische Technik

- Infrastruktur und Fahrzeugkomponenten geeignet für möglichst viele Anwendungen
 - Für Elektrotaxis, private KFZ und autonome Shuttles
 - Für Logistikfahrzeuge, LKW und Busse
- Laden im Stand und während der Fahrt
- Kompatibilität & Zukunftsoffenheit
 - kombinierbar mit Speichertechnik zur Einbindung lokal erzeugter regenerativer Energien
 - Nutzbarkeit von "Systemdaten" zur Positionierungs- und Spurführungsassistenz
- Infrastruktur sollte eine so hohe Benutzung wie möglich haben
 - Hochfrequentierte Straßen
 - Längere Verweilzeiten
- Möglichst geringe Kosten
 - minimaler Materialeinsatz
 - einfaches Einbringen in die Straße




Lösungsansätze - Spulenauslegung

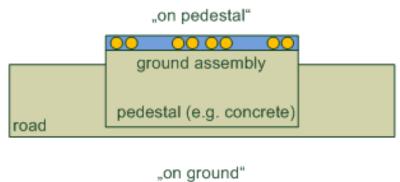
Topologie

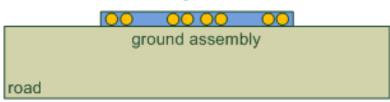


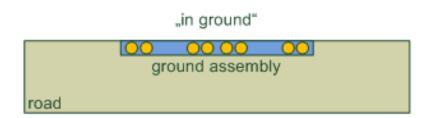
Topologie straßenseitig

- Vergleichsweise geringer Materialeinsatz in der Straße – keine Ferrite
- Vergleichsweise geringer Straßenintegrationsaufwand
- Für PKW sowie schwere Fahrzeuge geeignet
- Spulenabschnitte je nach zu erwartender Fahrzeuggeschwindigkeit in Fahrtrichtung verlängerbar
- Fahrzeugspule in der Länge einstellbar je nach benötigter Übertragungsleistung

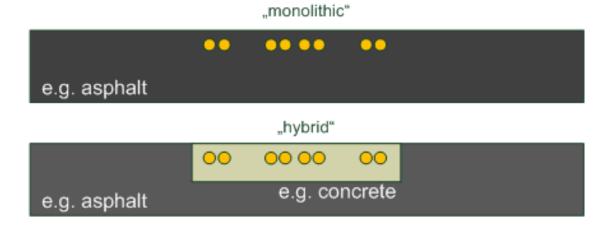
Topologie Fahrzeugseitig

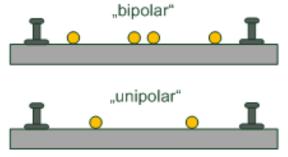






Lösungsansätze - Straßenintegration


Statisch (Straßenverkehr)



Dynamisch (Straßenverkehr)

Dynamisch (Eisenbahn)

Beispiel 1: "E-Taxi Wartespur"

- Z.B. am Flughafen oder vor dem Hauptbahnhof
- Nachladung der Taxi-Fahrzeuge beim Vorwärtsbewegen bis zum Kundenaufnahmepunkt
- "Nachladung" von um die 80-100 km in der 30 minütigen Wartezeit
- Versorgung von Energie für Abnehmer wie Heizung oder Klimanlage

Beispiel 2: "E-Bus Ladespur - BRT"

- Ständiges Nachladen während das Fahrzeug sich im Busstationsbereich befindet
- Energetische Unterstützung während der Beschleunigung
- Infrastruktur mit anderen Verkehrsteilnehmer teilbar (z.B. Taxi, KEP-Dienstleister)

INTIS F&E Projekt - 2014 abgeschlossen

- Leistung: 60 kW (2 kWh Super Caps)
- System: Dynamisch (Energieübertragung während der Fahrt oder im Stehen)
- Pick-up Dimensionen: 2.000 x 800 x 22 mm
- Spannung Fahrzeugseitig: 600 V

Exemplarische INTIS Kundenprojekte – 2016 abgeschlossen

• Leistung: 30 kW

• System: Stationär

• Pick-up Dimensionen: 880 x 860 x 25 mm

• Spannung Fahrzeugseitig: 300 V

Exemplarische INTIS Kundenprojekte – 2017 abgeschlossen

• Leistung: 15 kW

• System: Stationär

• Pick-up Dimensionen: 860 x 670 x 25 mm

• Spannung Fahrzeugseitig: 80 V

Exemplarische INTIS Kundenprojekte – 2018 abgeschlossen

• Leistung: 11 kW

• System: Stationär

• Pick-up Dimensionen: 420 x 300 x 25 mm

• Spannung Fahrzeugseitig: 360 V

Die Technik in der Anwendung

Ermöglicht die Elektrifizierung einer Anwendung oder Reduziert die Hemmschwelle

• Reduzierung des Aufwands auf der Fahrzeugseite um eine Umsetzung technisch oder wirtschaftlich möglich zu machen

Technik muss für eine Anwendung als Gesamtsystem betrachtet werden, z.B.

- Reduzierung der Batteriekapazität
- Reduzierung der Batteriebelastung
- Laden ohne Handgriff (kann nicht vergessen werden)
- Laden auf Verweilstrecken
- Keine Infrastruktur im weg (laden auf lehre oder zeitweise unbenutzte Flächen, laden auf Flächen wo das tägliche Geschäft stattfindet)

Wir sind Experten für die Technik; für alles weitere brauchen wir den Anwender

Kontakt

Richard Gould

Geschäftsentwicklung

+49 (0)40 6094 2074
Richard.Gould@intis.de

INTIS GmbH Rödingsmarkt 9 20459 Hamburg

> info@intis.de www.intis.de

